
Norman F. Schneidewind, "Software Reliability Engineering for Client-Server Systems",
Proceedings of the The Seventh International Symposium on Software Reliability
Engineering, White Plains, New York October 30, 1996 - November 2, 1996, pp.226-235.

Abstract Popular software reliability models treat software

Too often the assumption is made, when doing accordance with this perspective. However in a
software reliability modeling and prediction, that distributed system, with multiple clients and servers,
the software involves either a single module or this approach is not applicable. We developed a
node. The reality in today's increasing use of multi software reliability model that takes into account the
node client-server systems is that there are fact that not all software defects and failures result in
multiple entities of software that execute on system failures in a client-server system. In this
multiple nodes that must be modeled in a system model there are critical clients and servers: clients and
context, if realistic reliability predictions and servers with critical functions (e.g., network
assessments are to be made. For example if there communication) that must be kept operational for the
are N clients and N servers in a client-server system to survive. There are also non-critical clientsc s

system, it is not necessarily the case that a and servers with non-critical functions (e.g., email).
software failure in any of the N clients or N These clients and servers also act as backups forc s

servers will cause the system to fail. Thus, if such critical clients and servers, respectively. The system
a system were to be modeled as a single entity, the does not fail unless all non-critical clients fail and one
predicted reliability would be much lower than or more critical clients fail, or all non-critical servers
the true reliability because the prediction would fail and one or more critical servers fail. Our
not account for criticality and redundancy. The motivation was twofold: 1) Our literature search on
first factor accounts for the possibility that the related research yielded few articles on software
survivability of some clients and servers will be reliability prediction that dealt with client-server
more critical to continued system operation than systems, so there is the need to develop reliability
others, while the second factor accounts for the models that address this environment; 2) Our work
possibility of using redundant nodes to allow for for the Marine Corps Tactical Systems Support
system recovery should a critical node fail. To Activity (MCTSSA) required the development of
address this problem, we must identify which such a model because this is the type of system that
nodes -- clients and servers -- are critical and is developed by this agency, where valid predictions
which are not critical, as defined by whether these of software reliability are important for evaluating the
nodes are used for critical or non-critical reliability of systems that will be deployed in the field.
functions, respectively. In addition to the development of a prediction model,

1. Introduction specifying software reliability requirements for client-

as a single entity and model the failure process in

it was also important to develop an approach to

server systems. These requirements must be stated in
terms that recognize the difference between critical

and non-critical functions and that a software defect Too often the assumption is made, when doing
leading to a software failure does not necessarily software reliability modeling and prediction, that the
result in a system failure. Furthermore the prediction software involves a single node. The reality in
methodology and the approach for specifying today's increasing use of multi node client-server
software reliability requirements must be consistent. systems is that there are multiple entities of software

First we state the scope of our research. Then in a system context, if realistic reliability predictions
we discuss the client-server reliability prediction and assessments are to be made. For example if there
problem and provide definitions that are applicable to are N clients and N servers in a client-server
client-server systems. This is followed by comments system, it is not necessarily the case that a software
on the related research we were able to find on failure in any of the N clients or N servers , which
software and system reliability modeling of client- causes the node to fail, will cause the system to fail.
server systems. Next we describe the need for Thus, if such a system were to be modeled as a single
consistency between client-server system reliability entity, the predicted reliability would be much lower
specifications and prediction models. Then we than the true reliability because the prediction would
formulate the model, which consists of two major not account for criticality and redundancy. The first
components: 1) probability of system failure, given the factor accounts for the possibility that the survivability
occurrence of node failures caused by software of some clients and servers will be more critical to
defects and 2) predictions of Time to Failure for continued system operation than others, while the
various types of node failures, including the type that second factor accounts for the possibility of using
leads to system failure. At this point we apply the redundant nodes to allow for system recovery should
model to the Marine Corps' LOGAIS client-server a critical node fail. To address this problem, we must
system, in which we compare predicted with actual identify which nodes -- clients and servers -- are
results. We close with some conclusions about the critical and which are not critical. We use the
feasibility of this model and directions for future following definitions:
research.

1.1 Scope a computer, that has a network interface card

We consider only software defects and failures
and system failures that are caused by software Client: A node that makes requests of servers in a
failures. We exclude hardware failures. Also our network or that uses resources available through the
model only includes predictions of software reliability servers [NOV95].
and predictions of system reliability that are based on
predictions of software failures. We exclude Server: A node that provides some type of network
predictions of hardware reliability. Interestingly, in the service [NOV95]
Marine Corps' LOGAIS system (a logistical system
for support amphibious operations), which we used Client-Server Computing: Intelligence, defined
as a test case for our research, 4084 (88.3 percent)of either as processing capability or available
the 4584 defects were attributed to software information, is distributed across multiple nodes.
[HEI96]. There can be various degrees of allocation of

2. Client-Server Software Reliability Prediction from one extreme of an application running on the

that execute on multiple nodes that must be modeled

c s

c s

Node: A hardware element on a network, generally

installed [NOV95].

computing function between the client and server,

client but with requests for data to the server to the Software Defect: Any undesirable deviation in the
other extreme of a server providing centralized operation of the software from its intended operation,
processing (e.g., mail server) and sharing information as stated in the software requirements. A software
with the clients [NOV95]. We use the terms client- defect may be apparent
server computing and distributed system
synonymously. Software Failure: A defect in the software that

Critical function: An application function that must server system to be unable to perform its required
operate for the duration of the mission, in accordance function within specified performance requirements
with its requirement, in order for the system to (i.e., a node failure caused by a software defect).
achieve its mission goal (e.g., the requirement states
that a military field unit must be able to send messages Non-Persistent Failure: A software failure that
to headquarters and receive messages from does not recur after canceling the offending program
headquarters during the entire time that a military and retrying it, or rebooting, or using another node.
operation is being planned). This type of function The occurrence of such a failure is frequently
operates in the network mode, which means that the hardware dependent (e.g., occurs if memory is
application requires more than a single client to insufficient) or environment dependent (e.g., occurs
perform its function; thus client to server or client to only if a certain sequence of operations or functions
client communication is required. has occurred).

Non-critical function: An application function that Persistent Failure: A software failure that recurs
does not have to operate for the duration of the even after canceling the offending program and
mission in order for the system to achieve its mission retrying it, or rebooting, or using another node. The
goal (e.g., it is not necessary to perform word occurrence of such a failure is independent of
processing during the entire time that a military hardware capacity and operating environment.
operation is being planned). Often this type of
function operates in the standalone mode, which System Failure: The state of a client-server system,
means that a single client performs the application which has experienced one or more node failures,
function; thus client to server or client to client wherein there are insufficient numbers and types of
communication is not required, except for the nodes available for the system to perform its required
possible initial downloading of a program from a file functions within specified performance requirements.
server or the printing of a job at a print server.

Critical clients and servers: Nodes with critical
functions, as defined above. These nodes must be In our literature search we found only a few
kept operational for the system to survive, either by articles that were directly related to our research;
incurring no failures or by reconfiguring non-critical most of the articles were only tangentially related.
nodes to operate as critical nodes. We mention the more relevant ones. Hecht and

Non-critical clients and servers: Nodes with non- a function of capability [HEC95]. This allows
critical functions, as defined above. These nodes also tradeoffs to be made between these two factors.
act as backups for the critical nodes, should the They point out that distributed systems do not just
critical nodes fail. operate in one of two states -- operational or failed --

causes a node (either a client or a server) in a client-

3. Related Research

Hecht model the availability of a distributed system as

as in conventional reliability or availability analysis. "item" in the context of a client-server system? The
Instead, distributed systems can operate in partial IEEE definition suggests a single entity. In the
service or degraded states. Our approach of definition, "function" is singular, whereas in a client-
distinguishing between critical and non-critical server system there are multiple functions. How do
functions, clients, and servers is consistent with this we operationalize the requirement of .999? Does it
view. Hariri and Mutlu have developed a two level mean that a client should be able to execute a given
approach to analyze the availability of distributed function 99.9 percent of the attempts? How critical is
systems [HAR95]. At the user level the availability of this function relative to other functions? How do we
tasks was modeled by using a graph approach; at the allocate .999 among the various clients and servers?
component level Markov models were developed to
analyze component availabilities. In contrast, our What is needed is a software reliability
primary need is to predict the times when software specification that addresses the following: 1) definition
failures will occur and the times when an of critical and non-critical functions; 2) definition of
accumulation of these failures will cause the system to what constitutes "success" and "failure" in executing
fail. Lee and Iyer analyzed faults in the Tandem the functions; 3) consequences of failure to execute
GUARDIAN operating system that resulted in these functions correctly; 4) sequence of function
processor failures and invoked backup processes to execution; and 5) elapsed time in which functions
take over [LEE95]. One of our objectives is similar must be completed. With this type of specification in
in that we analyze the types of software defects that hand, we can map it to a client-server architecture
can cause a node failure and the types of node with a definition of the software and node failure
failures that can cause a system failure. Kumur, states that would cause a system failure.
Hariri, and Raghavendra developed a model for
estimating the probability of successful execution of a 5. Model Formulation
distributed program and the probability that all
programs of a set run successfully [KUM86]. In By defining System Nodes, Node Failure
contrast, our focus is on predicting reliability at the Probabilities, and Failure States, we can formulate
node and system levels in a client-server system. the probability of system failure given that a node

4. Client-Server Software Reliability
Specification 5.1 System Nodes

In addition to the importance of modeling the N : Number of Critical Client nodes.
correct system configuration when making reliability N (t): Number of Non-Critical Client nodes.
predictions, it is equally important to state software N : Number of Critical Server nodes.
reliability requirements for a client-server system that N (t): Number of Non-Critical Server nodes.
are meaningful for the actual operational mode of the
system. Typically, reliability requirements are stated where the total number of nodes is
as .999..... What does this mean in operational N(t)=N +N (t)+N +N (t) (1)
terms? Technically, according to the IEEE Standard
Glossary on Software Engineering Terminology
[IEE90], it means there is a .999 "probability that an As long as the system survives, N and N are
item will perform a required function under stated constants because a failure of a critical node will
conditions for a stated period of time". What is the result in a non-critical node replacing it, if there is a

failure has occurred.

cc

nc

cs

ns

cc nc cs ns

cc cs

non-critical node available. Because many software p : probability of a software defect causing a non-
failures are non-persistent and are specific to critical client node to fail.
particular nodes, it is assumed that a non-critical node
will replace a critical node, if one is available, in an p : probability of a software defect causing a critical
attempt to keep the system operational. On the other server node to fail.
hand, if a persistent software failure has occurred,
it could cause the replacement node to also fail. A p : probability of a software defect causing a non-
change in software configuration may be necessary critical server node to fail.
on the former non-critical node in order to run the
failed critical node's software. If a critical node fails, Thus given a node failure, we have the following
the system fails, if there are no non-critical nodes function for the probability of system failure:
available on which to run the failed critical node's
software. P /node fails=f(N , p , N , p , N , p , N , p) (2)

 In contrast, N (t) and N (t) are decreasing The four probabilities are estimated from data innc ns

functions of operating time because these nodes a defect database (defect descriptions, defect
replace failed critical nodes, and are not themselves classifications, and administrative information) as
replaced, where N (0) is the number of non-critical follows:nc

clients and N (0) is the number of non-criticalns

servers at the start of system operation, respectively. p =3 f (I)/D, where f (I) is the critical client node
In addition, if a non-critical node fails, the function failure count in interval I; (3)
that had been operational on the failed node can be
continued on another node of this type and the system p =3 f (I)/D, where f (I) is the non-critical client
can continue to operate in a degraded state. When node failure count in interval I; (4)
either a non-critical node replaces a critical node or
a non-critical node fails, N (t) or N (t) is decreased p =3 f (I)/D, where f (I) is the critical server nodenc ns

by one, as appropriate. failure count in interval I; (5)

We assume that when a node fails, and the failure p =3 f (I)/D, where f (I) is the non-critical server
does not result in a system failure, the network can be node failure count in interval I; (6)
automatically or manually reconfigured by the
network operating system or the operations and the total defect count across all intervals is
personnel, respectively.

5.2 Node Failure Probabilities

We must also account for the following node time of the software and d(I) is the total defect count
failure probabilities: in interval I.

p : probability of a software defect causing a critical In a specific application, Boolean expressions arecc

client node to fail. used to search the defect database and extract the

nc

cs

ns

sys cc cc nc nc cs cs ns ns

cc i cc cc

nc i nc nc

cs i cs cs

ns i ns ns

 D=3 d(I), (7) i

 where I is the identification of an interval of operating

failure counts (e.g., f (I)) that are used to computecc

equations (3)-(6). These expressions specify the

conditions that qualify a defect as a node failure (e.g., (servers) fail, and one or more critical clients
defect that is a General Protection Fault that affects (servers) fail, there would be no non-critical clients
network operations on a Windows-based system). (servers) left to take over for the failed critical clients

5.3 Failure States 1.

At a given time t, the system can be in one of three 5.4 System Failure Probability
failure states that pertains to the survivability of the
system, as follows, in decreasing order of capability: The probability that one or more critical clients

Degraded - Type 1: A software defect in a non-
critical node causes the node to fail. As a result, the P =1-(1-p) (8)
system operates in a degraded state, with one less
non-critical node. No reconfiguration is necessary The probability that all non-critical clients N (t)
because the failed node is not replaced. have failed by time t, given that the software fails, is:

Degraded - Type 2: A software defect in a critical P (t)=(p) (9)
node causes the node to fail. As a result, the system
operates in a degraded state, but one that is more The probability that one or more critical servers
severe than Type 1, because there would be both a N fail, given that the software fails, is:
temporary loss of one critical node during
reconfiguration and a permanent loss of one non- P =1-(1-p) (10)
critical node (i.e., one of the non-critical nodes takes
over the function of the failed critical node). Under The probability that all non-critical servers N (t)
certain conditions -- see Table 1 -- this type of node have failed by time t, given that the software fails, is:
failure can cause a system failure.

The current version of the model assumes that
node failures are not recoverable on the node where Equations (8) and (9) assume that client failures
the failure occurred, during the mission. The next are independent. This is the case because a failure in
version of the model will contain a repair function to one client's software would not cause a failure in
account for the case where a node failure is repaired another client's software. However it is possible that
and the node is put back into operation during the a failure in server software could cause a failure in
mission. client software, such as a client accessing a server

System Failure: The system fails under the following (11) assume that server failures are independent. This
conditions: 1) all non-critical clients fail and one or is the case because a failure in one server's software
more critical clients fail, or 2) all non-critical servers would not cause a failure in another server's software.
fail and one or more critical servers fail. The reason However it is possible that a failure in client software
for this failure event formulation is that, in the event of could cause a failure in server software, such as a
a failed critical node, a non-critical node can be client with corrupted data accessing a server. We
substituted, possibly with a different software have found no case of client failures that were caused
configuration. However, if all non-critical clients by server failures nor of the converse in the data we

(servers). The failure states are summarized in Table

N fail, given that the software fails, is:cc

cc cc
Ncc

nc

nc nc
Nnc(t)

cs

cs cs
Ncs

ns

P (t)=(p) (11)ns ns
Nns(t)

that has corrupted data. Also, equations (10) and

TF(t)'[(log[á/(á&â(Xs,t%

for (á/â)>(Xs,t%Ft)
(14)

have examined. Of course, this is not to suggest that of node failures; then we partition the defect data
these events could not happen in general. To account accordingly. More will be said about this process
for the possibility of these events, we would need to when we apply the model. Next we apply equation
include the conditional probability of a client failure, (14) of the Schneidewind Software Reliability
given a server failure, and the converse. This model Model [AIA93, KEL95, LYU 96, SCH92, SCH93]
formulation is beyond the scope of this paper and will to make each of the four predictions, using the
appear in a future paper. SMERFS software reliability tool [FAR93]. In

Combining (8), (9), (10), and (11), the probability until the next F failures (one or more) occur, á and â
of a system failure by time t, given that a node fails, is: are failure rate parameters, s is the first interval where

P /node fails=[P][P (t)]+[P][P (t)]= interval, and X is the cumulative number of failuressys cc nc cs ns

[1-(1-p)][(p)]+[1-(1-p)][(p)] (12)cc nc cs ns
Ncc Nnc(t) Ncs Nns(t)

and the probability of a node failure due to software
is:

p =p +p +p +psw cc nc cs ns

(13)
5.5 Model Concepts

The model concepts are illustrated in Figures 1
and 2, where there are five critical clients, five non-
critical clients, one critical server, and one non-critical
server. Figure 1 shows a surviving configuration,
where a critical client fails and a critical server fails
but there are non-critical clients and a non-critical
server to take over the functions of the failed nodes.
The consequence of this configuration is a Degraded
- Type 2 failure state. Figure 2 shows a failing
configuration where there are no non-critical clients
and server to take over for the critical failing nodes.
The consequence of this configuration is a system
failure. In both figures, for illustrative purposes, we
show both a failed critical client and a failed critical
server. A more typical case is when only one of the
critical nodes fails at a time.

5.6 Time to Failure Prediction

In order to make Time to Failure predictions for
each of the four types of node failures, we first
analyze the defect data to determine what type of
software defects could cause each of the four types

equation (14), T (t) is the predicted time (intervals)f

t

the observed failure data is used, t is the current

s,t

observed in the range s,t.

Time to Failure predictions are made for critical
clients, non-critical clients, critical servers, and non-
critical servers. As the predicted failure times are
recorded, we observe whether the condition for
system failure, as defined previously, has been met. If
this is the case, a predicted system failure is recorded.
Thus, in addition to monitoring the types of predicted
failures (e.g., critical client), the process also involves
monitoring N (t) and N (t) to identify the time tnc ns

when either is reduced to zero, signifying that the
supply of non-critical clients or non-critical servers
has been exhausted. In this situation, a failure of a
critical client or critical server, respectively, will result
in a system failure. Thus we predict a system failure
when the following expression is true:

((Predict critical client failure)v(N (t)=0))w((Predictnc

critical server failure)v(N (t)=0))ns

(15).

If our predictions produce multiple node failures in
the same interval (e.g., critical client and critical
server), we record multiple failures for that interval.

6. Application of the Model

6.1 Analysis of the Defect and Failure Data

Now we apply the software reliability modeling client, a client which does not have to maintain
approach that has been described. We apply the communication with other nodes on the network
model to the Marine Corps LOGAIS system -- a (Standalone Mode), and the failure does not cause
client-server logistical support system. In this system a System Crash (loss of server).
it is important that the reliability specification
distinguish between failure states Degraded-Type 1, 3. Critical Server Failure: COUNT as failures
Degraded-Type 2, and System Failure, as WHERE (SvnotGvNvC). A System Crash causes
previously defined (i.e., distinguish between node a node failure (Degraded-Type 2)on a critical
failures that cause performance degradation but allow server, a server which must maintain communication
the system to survive, and node failures that cause a with other nodes on the network (Network Mode),
system failure). We make this distinction when and the failure is not a GPF; it is more serious,
analyzing the system's defect data. The defect data resulting in the loss of a server.
used in the example are from the LOGAIS defect
database management system [MHB96, MTP96]. 4. Non-Critical Server Failure: COUNT as failures
We use the network configurations in Figures 1 and WHERE (SvnotGvnotNvC). A System Crash
2. causes a node failure (Degraded-Type 1)on a non-

In this Windows-based client-server system, we maintain communication with other nodes on the
use the types of clients and servers previously network, and the failure is not a GPF; it is more
defined, with corresponding types of defects and serious, resulting in the loss of a server.
failures, as identified in the defect database [MHB96,
MTP96], and the following short-hand notation for The above classification associates GPF with
identifying the attributes of the defect database: clients and System Crash with servers; it also

o S: Software Defect node failures. Note that this is only an example. For
o G: General Protection Fault (GPF) other systems, different defect and failure
o N: Network Mode Failure classifications may be appropriate.
o C: System Crash

The LOGAIS defect database was queried in count:
order to identify the software defects that qualify as
node failures. The following Boolean expressions, 5. Total Failure Count: COUNT as failures WHERE
corresponding to the four types of node failures, were (Sv((GvnotC)w(notGvC))). This expression is used
used: to verify the correctness of expressions 1-4 because

1. Critical Client Failure: COUNT as failures
WHERE (SvGvNvnotC). A GPF causes a node Upon querying the defect database, using the
failure (Degraded-Type 2) on a critical client, a client above expressions, we arrived at the failure counts
which must maintain communication with other nodes listed in Table 2 in the range 51,61. This is a sample
on the network (Network Mode), and the failure of the node failure database, selected because it is the
does not cause a System Crash (loss of server). prediction range for some of the comparisons that will

2. Non-Critical Client Failure: COUNT as failures Failure. The failure counts corresponding to types
WHERE (SvGvnotNvnotC). A GPF causes a 1-5, above are summarized in Table 3, which shows
node failure (Degraded-Type 1)on a non-critical

critical server, a server which does not have to

associates Network Mode Failures with critical

Taking the union of 1-4 we form the total failure

it should equal their sum.

be made later between predicted and actual Time to

the empirical probabilities of node failure, where we predicted to occur before the system is predicted to
used equations (3)--(7) and (13) to compute them. fail. This occurs at t=61.07 days when there are no

6.2 Application Predictions No critical server failures are shown in this table

6.2.1 Time to Failure days cumulative is beyond the prediction range of

Using equation (14) and failure data in the
observed range 1-50 (not shown) , we made Using the data in Table 7, we plot predicted
predictions for Time to Failure, for t>50 days, for cumulative failures and number of available non-
critical clients, non-critical clients, and non-critical critical clients versus cumulative time to failure in
servers, in Tables 4, 5 and 6, respectively. The Figure 3. This graph shows the accumulation of node
predictions are made for a given numbers of failures failures, with the corresponding reduction in the
(time to one failure for t>50 days, time to two available non-critical clients, until the maximum
failures for t>50 days, etc.). The predictions are allowable failures occurs, and the system fails.
compared with the actual failure data, with the
relative error and average relative error for Using the data in Tables 4-6, we merge and
cumulative values shown. In the case of critical sequence the various types of actual failures in Table
servers, there are only two actual failures, both of 8. Similar to Table 7, the purpose of this table is to
which occur in the observed range. Only one construct the scenario of actual failures and surviving
prediction of Time to Failure for one more failure non-critical nodes so that the actual time of System
could be made at t=50 for critical servers because the Failure can be determined and compared with the
predicted remaining failures at t=50 is 1.40 ; predicted values. As in the case of the predictions,
therefore, critical server failures are not tabulated. In this table shows that seven node failures (i.e., the
the case of non-critical nodes, the failure data is sequence NC, NS, NC, NC, NC, NC, CC) occur
sufficiently dense to allow a failure count interval of before the system fails. This occurs at t=61days when
one day. In the case of critical clients, the failure data there are no non-critical clients available and a critical
was sparse; thus a five day interval was used for client fails. No critical server failures are shown in this
prediction, with these predictions converted to the table because they occurred prior to the range of this
one day intervals shown in Table 4. We note that example.
predictions are difficult to make with this type of data
because the defects and failures are not recorded in Using the data in Table 8, we plot actual
CPU execution time. Rather they are recorded in cumulative failures and number of available non-
calendar time in batches, as shown in the Table 2, critical clients versus cumulative time to failure in
based on administrative convenience. Many of these Figure 4. The shape of Figure 4 is caused by multiple
batches are submitted at the end of a workday. This failures occurring on the same day in some cases. In
time becomes the "submit date". comparing Figures 3 and 4, we see that in each case

Using the data in Tables 4-6, we merge and failure and that the system fails on Day 61; however,
sequence the various types of failure predictions in the supply of non-critical clients becomes exhausted
Table 7. The purpose of this table is to construct the earlier in the actual case.
scenario of failures and surviving non-critical nodes
so that the time of System Failure can be predicted. 6.2.2 Probability of System Failure
The table shows that seven node failures (i.e., the
sequence NS, NC, NC, CC, NC, NC, CC) are

non-critical clients available and a critical client fails.

because the prediction of Time to Failure of 99.35

interest in this example.

seven node failures are required to cause a system

Lastly, using equation (12), we predict the 7. Conclusions and Future Research
probability of system failure, given a node failure, in
column 5 of Table 9, as the system progresses Based on the above approach, it appears feasible
through the predicted failure scenario that was shown to develop a system software reliability model for a
in Table 7 and Figure 3. Except for row 2 in Table 9, client-server system. In order to implement the
the actual probability is the same as the predicted approach, it is necessary to partition the defects and
probability because the actual failure scenario that failures into classes that are then associated with
was shown in Table 8 and Figure 4 produces the critical and non-critical clients and servers. Once this
same numbers of non-critical clients and servers that is done, predictions are made of Time to Failure for
are shown in columns 6 and 7, respectively. Because each type; the predictions are classified according to
the predicted and actual failure scenarios are those that would result in a node failure caused by a
identical, except for row 2, the predicted time to software defect and those that would result in a
failure and type of node failure, columns 1 and 2, system failure caused by a series of software defects.
respectively, can be compared in with the Then the probability of system failure is computed. A
corresponding actual values in columns 3 and 4, for significant result of the research is that software
given probabilities of system failure. These values failures should not be treated as the equivalent of
were reproduced from Tables 7 and 8, respectively. system failures because to do so would grossly
Because for a given P /node fails, the cumulative understate system reliability.sys

time to failure occurs later for the predicted values,
the model is a bit optimistic with respect to reality for In future research we will deal with the problem of
this example. Note that the in the last row of Table 9 how to apply the model to a system that has a large
the system has not yet failed. This occurs when a number of nodes. The technique that we described
critical client fails at Day 61.07 predicted (see Table for monitoring the times when predicted node and
7 and Figure 3) and at Day 61 actual (see Table 8 system failures occur would be cumbersome for a
and Figure 4). At this time there are no non-critical large system. It appears that a program must be
clients left to replace the failed critical client. written to automate this process. Other possible

The significant results that emerge from this the model to include hardware failures; develop
analysis are that: 1) The P /node fails is only measures of performance degradation, as nodes fail;sys

significant (.029790) when the supply of both non- include a node repair rate to reflect the possibility of
critical clients and non-critical servers has been recovering failed nodes during the operation of the
exhausted and 2) P /node fails is significantly lower system; apply smoothing techniques, such as thesys

than the probability of any type of node failure moving average, to mitigate anomalies in calendar
caused by a software defect: p =.065705, obtained time defect data. sw

from equation (13) and computed in Table 3. Thus
evaluations of system reliability should recognize that
software failures are not necessarily equivalent to
system failures and that assessments of software
reliability that treat every failure as equivalent to a
system failure will grossly understate system
reliability.

future research activities include the following: extend

8. References [KEL95] Ted Keller, Norman F. Schneidewind, and

[AIA93] Recommended Practice for Software Increasing Confidence in the Reliability of
Reliability, R-013-1992, American the Space Shuttle Flight Software",
National Standards Institute/American Proceedings of the AIAA Computing in
Institute of Aeronautics and Astronautics, Aerospace 10, San Antonio, TX, March
370 L'Enfant Promenade, SW, 28, 1995, pp. 1-8.
Washington, DC 20024, 1993.

[FAR93] William H. Farr and Oliver D. Smith, C.S. Raghavendra, "Distributed Program
Statistical Modeling and Estimation of Reliability Analysis", IEEE Transactions on
Reliability Functions for Software Software Engineering, Vol. SE-12, No. 1,
(SMERFS) Users Guide, NAVSWC TR- January 1996, pp. 42-50.
84-373, Revision 3, Naval Surface
Weapons Center, Revised September [LEE95] Inhwan Lee and Ravishankar.K. Iyer,
1993. "Software Dependability in the Tandem

[HAR95] Salim Hariri and Hasan Mutlu, on Software Engineering, Vol. 21, No. 5,
"Hierarchical Modeling of Availability in May 1995, pp. 455-467.
Distributed Systems', IEEE Transactions
on Software Engineering, Vol. 21, No. 1,
January 1995, /pp. 50-56. [LYU96] Michael R. Lyu (Editor-in-Chief),

[HEC95] Herbert Hecht and Myron Hecht, Alamitos, CA and McGraw-Hill, New
"Dependability Assessment for York, NY, 1995.
Decentralized Systems", Proceedings of
the International Symposium on [MHB96] MCTSSA Software Reliability Handbook,
Autonomous Decentralized Systems, Norman F. Schneidewind and Judie A.
Phoenix, AZ. March 1995, 9 pages. Heineman, Naval Postgraduate School,

[HEI96] Judie Heineman, Norman Schneidewind,
and Kenneth Warburton, "Software [MTP96] MCTSSA Software Reliability Engineering
Reliability Engineering Process Experience Training Plan, Norman F. Schneidewind
Report", Proceedings of The Eighth and Judie A. Heineman, Naval
Annual Software Technology Conference, Postgraduate School, January 10, 1996.
Salt Lake City, Utah, 21-26 April 1996,
17 pages.

[IEE90] IEEE Standard Glossary of Software
Engineering Terminology, IEEE Std
610.12.1990.

Patti A. Thornton "Predictions for

[KUM86] V.K. Prasanna Kumar, Salim Hariri, and

GUARDIAN System", IEEE Transactions

Handbook of Software Reliability
Engineering, Computer Society Press, Los

January 10, 1996.

[NOV95] Werner Feibel, Novell's Complete
Encyclopedia of Networking, Novell
Press, San Jose, CA, 1995.

[SCH93] Norman F. Schneidewind, "Software
Reliability Model with Optimal Selection of
Failure Data", IEEE Transactions on
Software Engineering, Vol. 19, No. 11,
November 1993, pp. 1095-1104.

[SCH92] Norman F. Schneidewind and T. W.
Keller, "Application of Reliability Models
to the Space Shuttle", IEEE Software,
Vol. 9, No. 4, July 1992 pp. 28-33.

Table 1
Failure States

Degraded - Type 1 Degraded - Type 2 System Failure

Non-Critical Client Node Failure Does Not Apply Does Not Apply

Critical Client Does Not Apply Node Failure(s) and Node Failure(s) and
N (t)>0 N (t)=0nc nc

Non-Critical Server Node Failure Does Not Apply Does Not Apply

Critical Server Does Not Apply Node Failure(s) and Node Failure(s) and
N (t)>0 N (t)=0ns ns

Table 2
 Chronological Node Failure Count Database (Sample)

CC: Critical Client Node Failure
NC: Non-Critical Client Node Failure
CS: Critical Server Node Failure
NS: Non-Critical Server Node Failure

Interval Defect ID Number Submit CC NC CS NS
Date

51 2633,2634 2 1/24/95 X

51 2635,2636,2637,2638 4 1/24/95 X

52

53 2661,2662,2663,2664 4 1/26/95 X

54 2641,2644,2645,2669, 8 1/27/95 X
2671,2672,2673,3003

54 2640,2643,2670,2674, 7 1/27/95 X
2675,2676,2783

55 2450 1 1/30/95 X

56

57

58 2487 1 2/2/95 X

59 2511,2512,2513 3 2/3/95 X

60

61 3025,3026,3027,3029 4 2/7/95 X

Table 3
Summary of Node Failures (4048 Software Defects)

Number of Failures Probability

1. Critical Client 24 p =.005929cc

2.Non-Critical Client 83 p =.020250nc

3.Critical Server 2 p =.000494cs

4. Non-Critical Server 158 p =.039032ns

5. Total 267 p =.065705sw

Table 4
Critical Client Predictions Made at Time=50 Days

 Observed Range=1,50 Days; Failure Count=11; Prediction Range>50 Days

Predicted Actual

Given Time to Cumulative Time Time to Cumulative Time Relative
Number of Failure to Failure (Days) Failure to Failure (Days) Error

Failures (Days) (Days) (Percent)

1 5.19 55.19 11 61 -9.52

2 11.07 61.07 11 61 +.11

3 17.88 67.88 11 61 +11.28

4 25.95 75.95 11 61 +24.51

5 35.86 85.86 36 86 -.16

Average=9.12%

Table 5
Non-Critical Client Predictions Made at Time=50 Days

 Observed Range=1,50 Days; Failure Count=36; Prediction Range>50 Days

Predicted Actual

Given Time to Cumulative Time Time to Cumulative Time Relative
Number of Failure to Failure (Days) Failure to Failure (Days) Error

Failures (Days) (Days) (Percent)

1 2.41 52.41 1 51 +2.76

2 4.87 54.87 1 51 +7.59

3 7.37 57.37 3 53 +8.25

4 9.92 59.92 3 53 +13.06

5 12.52 62.52 3 53 +17.96

 Average=9.92%
Table 6

Non-Critical Server Predictions Made at Time=50 Days
 Observed Range=1,50 Days; Failure Count=108; Prediction Range>50 Days

Predicted Actual

Given Time to Cumulative Time Time to Cumulative Time Relative
Number of Failure to Failure (Days) Failure to Failure (Days) Error

Failures (Days) (Days) (Percent)

1 1.96 51.96 1 51 +1.88

2 3.93 53.93 1 51 +5.75

3 5.90 55.90 1 51 +9.61

4 7.87 57.87 1 51 +13.47

5 9.84 59.84 4 54 +10.81

 Average=8.30%

Table 7
Predicted Time to Failure When Failures are Merged and Sequenced. Observed Range=1,50

Days; Prediction Range=51,61 Days
CC: Critical Client NC: Non-Critical Client NS: Non-Critical Server

Cumulative Time Time to Type of Number of Non- Number of Non-
to Failure (Days) Failure Failure Critical Clients Critical Servers

(Days) Available Available

50 1.96 5 1

51.96 .45 NS 5 0

52.41 2.46 NC 4 0

54.87 .32 NC 3 0

55.19 2.18 CC 2 0

57.37 2.55 NC 1 0

59.92 1.15 NC 0 0

61.07 CC System Failure

Table 8
Actual Time to Failure When Failures are Merged and Sequenced. Range=51,61 Days

CC: Critical Client NC: Non-Critical Client NS: Non-Critical Server

Cumulative Time Time to Type of Number of Non- Number of Non-
to Failure (Days) Failure Failure Critical Clients Critical Servers

(Days) Available Available

50 1 5 1

51 0 NC,NS 4 0

51 2 NC 3 0

53 0 NC 2 0

53 0 NC 1 0

53 8 NC 0 0

61 CC System Failure

Table 9

Probability of System Failure

Predicted Predicte Actual Actual Probability of Number of Number of
Cumulative d Cumulative Type of System Non-Critical Non-Critical

Time Type of Time to Failure Node Failure Given Clients Servers
to Failure Node (Days) Failure a Node Available Available

(Days) Failure Failure

50 50 0.000019 5 1

51.96 NS 0.000494 5 0* * *

52.41 NC 51 NC,NS 0.000494 4 0

54.87 NC 51 NC 0.000494 3 0

55.19 CC 53 NC 0.000506 2 0

57.37 NC 53 NC 0.001087 1 0

59.92 NC 53 NC 0.029790 0 0

* Applies only to predicted values.

NS1CS1

NC2

CS=Critical
Server

CC=Critical
Client

NC3

CC1

NC1

CC2 CC4CC3 CC5

NS=Non-Critical
 Server

NC=Non-Critical
 Client

NC1 NC5NC4

NS1CS1

NC2

CS=Critical
Server

CC=Critical
Client

NC3

CC1

NC1

CC2 CC4CC3 CC5

NS=Non-Critical
 Server

NC=Non-Critical
 Client

NC1 NC5NC4

Figure 1. Surviving Configuration Figure 2. Failing Configuration

Figure 3. Predicted Node and System Failures Figure 4. Actual Node and System Failures

